Black-box recognition of finite simple groups of Lie type by statistics of element orders

نویسندگان

  • William M. Kantor
  • Akos Seress
چکیده

Given a black-box group G isomorphic to some finite simple group of Lie type and the characteristic of G, we compute the standard name of G by a Monte Carlo algorithm. The running time is polynomial in the input length and in the time requirement for the group operations in G. The algorithm chooses a relatively small number of (nearly) uniformly distributed random elements of G, and examines the divisibility of the orders of these elements by certain primitive prime divisors. We show that the divisibility statistics determine G, except that we cannot distinguish the groups PΩ(2m+1, q) and PSp(2m, q) in this manner when q is odd and m ≥ 3. These two groups can, however, be distinguished by using an algorithm of Altseimer and Borovik. 2000 Mathematics Subject Classification: Primary 20D06; Secondary: 20-04, 20P05, 68W30. ∗ This research was supported in part by the National Science Foundation. ∗∗ This research was supported in part by grant OTKA T29132, Hungary.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locally finite basic classical simple Lie superalgebras

In this work, we study direct limits of finite dimensional basic classical simple Lie superalgebras and obtain the conjugacy classes of Cartan subalgebras under the group of automorphisms.

متن کامل

A characterization of simple $K_4$-groups of type $L_2(q)$ and their automorphism groups

In this paper, it is proved that all simple $K_4$-groups of type $L_2(q)$ can be characterized by their maximum element orders together with their orders. Furthermore, the automorphism groups of simple $K_4$-groups of type $L_2(q)$ are also considered.

متن کامل

A new characterization of $L_2(q)$ by the largest element orders

‎We characterize the finite simple groups $L_2(q)$ by the group orders and the largest‎ ‎element orders‎, ‎where $q$ is a prime or $q=2^a$‎, ‎with $2^a+1$ or $2^a-1$ a prime‎.  

متن کامل

2-recognizability of the simple groups $B_n(3)$ and $C_n(3)$ by prime graph

Let $G$ be a finite group and let $GK(G)$ be the prime graph of $G$. We assume that $ngeqslant 5 $ is an odd number. In this paper, we show that the simple groups $B_n(3)$ and $C_n(3)$ are 2-recognizable by their prime graphs. As consequences of the result, the characterizability of the groups $B_n(3)$ and $C_n(3)$ by their spectra and by the set of orders of maximal abelian subgroups are ...

متن کامل

Recognition by prime graph of the almost simple group PGL(2, 25)

Throughout this paper, every groups are finite. The prime graph of a group $G$ is denoted by $Gamma(G)$. Also $G$ is called recognizable by prime graph if for every finite group $H$ with $Gamma(H) = Gamma(G)$, we conclude that $Gcong H$. Until now, it is proved that if $k$ is an odd number and $p$ is an odd prime number, then $PGL(2,p^k)$ is recognizable by prime graph. So if $k$ is even, the r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002